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A Z&dimensional, electrostatic particle code in a slab geometry has been developed to 
study low-frequency oscillations such as drift wave and trapped particle instabilities in a 
nonuniform bounded plasma. A drift approximation for the electron transverse motion 
is made which eliminates the high-frequency oscillations at the electron gyrofrequency 
and its multiples. It is, therefore, possible to study the nonlinear effects such as the anomalous 
transport of plasmas within a reasonable computing time using a real mass ratio. Several 
examples are given to check the validity and usefulness of the model, including those using 
full electron dynamics. 

1. INTRODUCTION 

Particle code simulation has become a well-established branch of plasma physics 
during recent years and is making crucial contributions to the understanding of the 
nonlinear processes inherent in plasma dynamics. Because of its flexibility, particle 
code simulation is quite useful and can be adopted easily for almost any kind of 
problem. Nonlinear behavior of microinstabilities of various origins, plasma heatings 
due to parametric processes and plasma diffusion caused by the low-frequency 
convective cells are a few of the examples in which the particle code simulation has 
played a central role. 

While it is true that the particle code simulation is quite useful and flexible, most 
of the simulations have been carried out in an idealized geometry with unrealistic 
simulation parameters. For example, the periodic boundary conditions have generally 
been adopted to simulate an infinite homogeneous plasma. In addition, smaller mass 
ratios have also been used to squeeze the differences in frequencies associated with 
the motions of the electrons and ions so as to save the computing time. 

In this paper we will describe a 2&-dimensional simulation model which is useful 
for studying low-frequency waves produced by the spatial inhomogeneity in a bounded 
(finite) plasma. We will also show that reasonably realistic simulations can be carried 
out with the real mass ratio of the ions and the electrons by using the drift approxi- 
mation for the electron transverse motion. We believe this is an important step in the 
direction of simulating a real fusion device such as a tokamak or a stellarator where 
the important processes are associated with the low-frequency fluctuations. 

In Section 2, the model, including the dispersion character, the particle-pushing 
schemes, and the boundary conditions, is described. In Section 3, test results for the 
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model under various conditions using both full electron dynamics and guiding-center 
electrons are shown. Concluding remarks are given in Section 4 with a possible 
extension of the work. 

2. DESCRIPTION OF THE MODEL 

A. Dispersion Relations 

In order to understand the basic properties of the 2&dimensional slab model, 
let us first derive the dispersion relation using the fluid approximation. We assume a 
configuration, shown in Fig. 1, where a uniform magnetic field BO is in the z direction, 
a wavevector k is in the y-z plane, and 0 is the angle between B,, and k. 

FIG. 1. Sketch of the configuration. 

Following Braginskii [l], a set of two fluid equations can be written for a plasma as 

% + v * (?zjVJ = 0, 

~+(v~V)V~=+(E+$~ x BO), 
i 

V2+ = -4ne(ni - n,), 

E = -V#, 

j = e and i, 

(1) 

where the thermal effects are neglected. 
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Linearizing Eq. (1) and assuming the perturbation quantities of the form 
exp(ik . x - iwt), one obtains the simple dielectric function 

(2) 

where wpe and wpi are the plasma frequencies and Qe and Qi are the gyrofrequencies 
of the electrons and the ions. 

The dispersion relation is obtained from E = 0 and a sketch is given in Fig. 2a. 
In general, there are three branches of oscillations for an arbitrary angle of propa- 
gation. For parallel propagation (0 = 0), the electron plasma waves and the cyclotron 
waves at !&J are the resonant oscillations. For perpendicular propagation (0 = n/2), 
upper hybrid Wuu = (wi, + De2)l/‘, lower hybrid WLu = Wpi/(l + ~~~~~~~~~~~ 
resonances and the convective cell mode at w  = 0 [2] are the three modes. When the 
warm plasma effects are considered, there are more natural oscillations such as 
electron and ion Bernstein modes, ion acoustic waves, and drift waves in an inhomo- 
geneous media. 

(0) (b) 

FIG. 2. Dispersion characteristics of the electrostatic waves in a magnetic field using full dynamics 
for electrons (a) and the guiding-center approximation for electrons (b). 

Now let us consider what happens to the dispersion diagram if we make a drift 
approximation for the electron transverse motion across the magnetic field. Using 
vLe = cE, x B,/B,,2 in Eq. (l), one finds 

Equation (3) can also be obtained by simply letting Qe ---f cc in Eq. (2). The corre- 
sponding dispersion diagram is shown in Fig. 2b. It is clear that there are no high- 
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frequency oscillations associated with the electron gyromotion in this case and at the 
same time all the low-frequency oscillations are unchanged. Since we are only 
interested in the problems with long-wavelength k,pe < 1, low-frequency w  < wpi , 
oscillations, where the electron transverse motion can be considered adiabatic, the 
use of this scheme will not alter the physics involved. On the other hand, the 
elimination of the high-frequency oscillations from the system lessens the restriction 
on the time step in the simulation. 

Since various frequencies associated with the thermal fluctuations are naturally 
generated by the particle motion in the particle code simulation, it is important to 
determine the condition under which the fluctuations at w  N Sz, are negligible. The 
amplitude of the fluctuations near the electron gyrofrequency for Qn, > Wpe , which 
can be calculated by making use of the fluctuation-dissipation theorem for a plasma 
in thermal equilibrium, is given by [2] 

E2 Te ofi, sin’ 0 -=- 
877. 2 !2,2 + w;, - 2w;, cos2 e (4) 

for a mode k. As we can see, the fluctuations at the electron gyrofrequency are 
negligibly small for Qe2 > CI$ . Hence, this gives us one more limitation on the use 
of the electron guiding-center model in addition to the usual conditions of k,pe < 1 
and w  < 9, . 

The low-frequency oscillations of lower hybrid and drift waves that propagate 
nearly perpendicular to the magnetic fields (k, > k ,,) are of the greatest interest to us. 
For such cases, the highest frequency of the system is of the order of the lower hybrid 
frequency mLH r wpr , which is usually much smaller than upe or Sze . Therefore, 
large time steps can be taken in the code to reduce the computing time. It is also 
possible to carry this further by using the drift approximation for the ions as well. 
Schemes can even be developed to preserve the finite gyroradius effects. However, 
we will not consider such a case here. By keeping the full dynamics for the ions, the 
code is general enough to include the ion inertia and dissipative effects which are 
crucial for the stability of low-frequency microinstabilities [3]. 

B. Particle Pushing Algorithm 

Let us now consider a 2$-dimensional (five-dimensional phase space) slab model 
shown in Fig. 3. Since we are most interested in the modes propagating nearly 
perpendicular to the magnetic fields as described in the previous section, B,(x) is 
oriented nearly along the z direction in our model with only a small component in y, 
i.e., B,, > Boy, Boz = 0. 

As we can see, the highest frequency in this configuration is of the order of wpr . 
Therefore, one would like to use a time step of 

wpi At E 0.25 - 0.5. (5) 
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FIG. 3. Sketch of the simulation model. 

One possible source of error in using such a large LI t may come from the free streaming 
of the electrons along the magnetic field lines. For cases of k, > k,, , the projection 
of the motion along the field lines into the x-y plane is quite small compared with the 
wavelength of the perturbation and therefore the particles will always experience a 
constant phase of the fluctuating field during one time step. Thus, the corresponding 
numerical error is negligible in the leap-frog scheme. However, significant errors 
may occur due to the transverse motion of the electrons for large At’s when the 
amplitude of the fluctuating field is also large. The average displacement of the 
electrons across the magentic field for one d t may be given by 

(6) 

where Ve is the electron thermal speed, and E,“/nTe is the field energy compared with 
thermal energy, which may be as large as 1O-2 for strong instabilities. Since ((Ax,)~)~/~ 
must be much less than the wavelength of interest the restriction on At from Eq. (6) 
may be more severe than Eq. (5) unless G’n, is much greater than wDe . 

For the ion mover, the standard leap-frog scheme has been used [4]: 

v’(t + At) - v’(t) 
At 

= & [E(t + At/z?) + ; (v’(t + At) + v’(t)) x BO] , 

xi@ + W2) - xi@ + A@) = vi(t + At) 
At 
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For the electron parallel motion along the field lines, the leap-frog scheme has again 
been adopted: 

u,,yt + At) - IlIe 
At -= - ;; -he + 49, 

x /, qt + 34 t/2) - x ,, qt + At/2) 
At 

= u,,e(t + At). 

For the electron perpendicular motion across the field lines, a predictor-corrector 
method [5], 

xy(t + 3At/2) - xle(t - AC/~) 
At 

=$E,(I+ At/2) x B,, 

x,e(t + 3At/2) 

= XL~(~ + At/2) + $+ [E,(t + At/z> + El*(t + 3At/2)] x B, , 
0 

has been used where El*(t + 3At/2) is the predicted electric field obtained from the 
predicted particle location xz*. As will be shown later, the scheme described above is 
accurate enough for the simulation of low-frequency drift wave instabilities for the 
time step of wpi At m 0.5. 

C. Boundary Conditions 

The boundary conditions in plasma simulations using particle codes are rather 
sophisticated and have not been studied extensively in the past. This is because the 
effects of the boundaries interfere and modify the physics that one is trying to simulate. 
Since the size of the simulation plasma is usually small compared with the real one, 
these interferences can become very significant. This leads to the use of the periodic 
boundary conditions in most of the simulations, which enables one to deal with an 
i&mite system free from boundaries. However, when a bounded (finite) plasma is 
used to simulate a nonuniform plasma, the boundary effects become unavoidable. 
Therefore, special care has to be taken in treating the plasma-boundary interactions 
to minimize the undesirable and unphysical effects. It is worth mentioning here that 
boundary effects are usually neglected in most of the theoretical analyses. 

For the sake of definiteness, we consider an idealized system, as shown in Fig. 4. 
The plasma is nonuniform in x with a prescribed density profile N(X) and is bounded 
by the conducting walls at x = 0 and L where the electrostatic potentials are zero. 
In the y direction, the plasma is uniform and is assumed periodic so that the waves 
can propagate through the system. In the following paragraphs, we will discuss 
different schemes that have been studied using this system. In order to make our 
discussions general enough for any bounded system, finite gyroradii for both electrons 
and ions are kept in the examples given below. 
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FIG. 4. Sketch of the nonuniform, bounded plasma model in a magnetic field. 

It is obvious that the periodic condition in x is not appropriate here since the 
plasma is nonuniform in this direction. One might suggest that it would be possible 
to have periodicity in x by using a periodic density profile N(x). Such a system is, 
of course, possible and we indeed tried it for the drift wave turbulence. However, 
a strong interference of two distinct drift waves excited at dN/dx > 0 and dN/dx < 0 
regions was observed. This interference modified not only the linear phase of the 
instability but also its development in the nonlinear turbulent stage. Even if these 
two branches of the instability could be separated in some MY, it is redundant to 
simulate two identical processes at the same time. 

Let us now look at the usual reflecting boundary conditions where the out-of- 
bounds particles are reflected back to the original system at every time step with 
x --f -x (or x --f 2L - x), and u, + -v, . The immediate consequence of this 
scheme was the shift of the guiding-center positions of these particles both in the x 
and y directions. While the shift in y produced the usual sheath currents along the 
wall, the shift in x created regions with sharp density rgadients near the boundaries, 
the widths of which were of the order of several gyroradii. Due to the differences 
in gyroradii between electrons and ions, large sheath electric fields were also set up 
near the walls which, in turn, drove a strong E x B drift. The combined effects 
caused cross-current instabilities which seemed to be of the two stream or lower 
hybrid types. These instabilities are usually strong enough to completely mask the 
weak drift wave instabilities in the main body of the plasma. They are, of course, 
undesirable. In principle, the guiding-center shift in x can be eliminated by using a 
rather complicated and time-consuming scheme in which particles are reflected exactly 
at the boundary. Besides being impractical, this scheme still leaves us the sheath 
currents to reckon with. 

Another obvious way to tackle the boundary problems is to use the absorbing 
wall condition, where all the particles reaching the boundaries are removed from the 
system. Again, regions with sharp density gradients appeared, and, because of the 
differences in gyroradii between the electrons and the ions, large electric fields were 
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also set up near the walls. The combined effects again caused the plasma to become 
unstable. To remedy this situation, one can emit particles back to the system. However, 
we found that the noise introduced by this scheme, due either to discrete particle 
effects or sheath formation, became intolerable when the time scale of the simulation 
was too long. Moreover, it is rather difficult to maintain a prescribed density profile 
near the wall with this method. 

As we can see, the noise produced by the plasma-boundary interactions mainly 
comes from the disturbance of the guiding-center positions of the particles near the 
wall. It is further enhanced by the discreteness and smallness of the simulation plasma, 
and by the large number of time steps involved in the low-frequency simulations. 

The method we finally settled upon is a combination of the absorption and reflection 
boundary conditions. In this scheme, particles are allowed to move freely in and out 
of the boundaries, mainly through gyrations. While outside, the particles are under 
the influence of a symmetric force field with respect to the wall and are advanced in 
time by the regular particle-pushing schemes, as are the particles inside. However, 
at every time step the positions of the out-of-bounds particles are temporarily mirror 
reflected back to the system for the purpose of charge distribution and diagnostic 
calculations. By doing so, we in fact assume that those particles never leave the system 
and, instead, traverse a trajectory, shown in Fig. 5. As we can see, the particles are 

Guiding Center 

Actual Effective 
Orbit Orbit 

x=0 

FIG. 5. Particle orbit near the boundary wall. 

“reflected” exactly at the wall and the guiding centers are not disturbed in either 
direction in the process. Thus, the pitfalls mentioned earlier are eliminated and the 
prescribed density profiles near the wall maintained. Furthermore, the total charge 
and energy of the system are also conserved at each time step with this scheme. The 
change in the direction of gyration for the out-of-bounds particles shown in Fig. 5 
should not present any problem to the bulk plasma if the system size is much larger 
than the gyroradius and the out-of-bounds particles do not drift too far from the 
system. These conditions are usually true for simulations. Since the potentials are set 
to zero at the wall, the drift in x for the particles due to Ev near the wall is always 
small. However, it is necessary to smooth out the potential fluctuations in y 
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completely near the wall in order to suppress associated noises. Without this 
smoothing scheme a weak numerical instability near the wall has been observed. 

Satisfactory results have been obtained in using the treatment of the boundary 
particles mentioned above for the model shown in Fig. 4 to study drift wave insta- 
bilities. The noise due to the plasma-boundary interactions was small when the 
finite gyroradii were kept for both electrons and ions. With the guiding-center 
approximation for the electrons, noise from the wall was further reduced. This is 
because the electrons do not cross the boundaries associated with the gyromotion 
and are reflected by the scheme of x + -x, U, - -D, . 

So far we have described the basic algorithm of the model useful for studying the 
low-frequency drift wave instabilities. Further modifications are necessary to study 
more complicated phenomena, such as the trapped particle instabilities where the 
trapping due to magnetic mirrors and the Coulomb collisions become essential. 
Such a model has been constructed and is being used to study the turbulent diffusion 
associated with the trapped particle instabilities [6]. We should point out here that 
this model may not be readily adaptable to electromagnetic codes becuase of the 
counterrotating particles involved. 

3. RESULTS OF SIMULATIONS 

A. Test of the Boundary Conditions 

Let us first point out several important aspects of the particle code simulation for 
the low-frequency microinstabilities. As we know, the amplitude of the low-frequency 
fluctuations is quite small compared with that of the high-frequency oscillations at 
the lower hybrid resonance, due to the fact that low-frequency phenomena are always 
in the quasi-neutral state. Therefore, the energy conservation of the code has to be 
better than that of the high-frequency oscillations. Moreover, it is also important 
to keep the high-frequency electric field fluctuations of the simulation plasma low, 
because the low-frequency waves can easily be masked by the small amount of the 
high-frequency noises. In some cases, excessive noise of this kind in the system can 
completely suppress the coherent signals of the charge buildup associated with the 
microinstabilities. Since the growth time of the instability is usually long for a typical 
run compared with the allowable time step d t, it makes these problems even more 
difficult to deal with. 

With those in mind, we have first carried out the test of the bounded plasma model 
with the absorption-reflection boundary conditions for the case of a homogeneous 
plasma. The parameters of the run were: 64 x 32 grid, 256 x 64 particles for each 
species, a (particle size) = 1.53, Te/Ti = 4, mi/me = 25, A&/wpe = 2, &,, = 2, 
wpe dt = 0.5, and 6 = 88.5”. The units of the simulations are Wpe’= 1, d(grid size) = 1. 
Figure 6 shows the time-averaged spectrum of the fluctuation field energy. Note that 
this run was made without the use of the guiding-center approximation for the 
electrons where the noise from the walls should be more pronounced. 
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FIG. 6. Fluctuation spectrum for the bounded plasma model. The theoretical values are given by 
Eka/8x = (l/T, + l/T&l/[1 + k2hDa exp(k%3)]. 

As we can see, the agreement between the theoretical predictions and the numerical 
results is quite satisfactory. The noise excited near the boundaries was apparently 
small. The accumulated error for the total energy conservation of the system was 
about 0.2 %. For cases with other boundary conditions the plasma was much noisier 
and the conservation of energy was also worse. Wall-induced instabilities were also 
observed. 

B. Simulation of Drift Wave Instabilities 

Here we will present a few examples of the simulations in an inhomogeneous, 
bounded plasma, where the drift wave instability is dominated by one unstable 
mode. 

The first example is the case in which we used the same particle-pushing schemes, 
i.e., schemes for full electron dynamics, and the same parameters as those in the 
previous run except for the density distribution where a hyperbolic tangent profile 
in x, 

N(X) = N,[I - K,& tanh(?c - x0)/l,,], 
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was used where Kg = 0.1, I,, = 24/rr, x0 = 32, and N, was average number density. 
Figure 7 shows the growth of the electric field fluctuations for the most unstable 
mode and the spatially averaged density modulations in the homogeneous y direction. 
The growth rate agrees well with the theory taking into account the mode structure 
in the inhomogeneous x direction [7]. The error for the total energy conservation 
was about 0.2 % and no serious noises were created near the boundary. 

lo-‘1 o A I I -2 

0 250 500 750 10;: 

wpe+ 

FIG. 7. Growth of the electric field and density fluctuations associated with the drift wave in- 
stability. The mass ratio is milme = 25. 

The second case is the example using a 64 x 64 grid with 256 x 128 particles for 
each species, mr/me = 100, TelTi = 4, h ne = 2, Qn,/wpe = 4, and f3 = 88.6”. Here 
the guiding-center model with ape At = 4 was used. The parameters for the density 
profile were K~ = 0.07, x0 = 32, I, = 34/n. The linear phase of the instability is 
shown in Fig. 8, which also closely follows the theoretical prediction [7]. The total 
energy conservation was quite satisfactory and the error was less than 0.1%. 

The last example is the case using a real mass ratio mi/me = 1837 on the 
64 x 64 grid with the same number of particles, K,, = 0.09, Z,, = 34/r, x0 = 32, 
Te/Ti = 9, A ne = 2, and 0 = 89.1”. To avoid the large step size of the cE x B,/B,2 
electron drift [Eq. (6)] in the guiding-center model, a strong magnetic field L&/one = 10 
and the time step ape At = 10 (Qe dt = 100) were used. The growth of the electric 

581/26/2-3 
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FIG. 8. Drift wave instability with mass ratio tni/me = 100. 

field energy is shown in Fig. 9 together with the development of the density modu- 
lation in the y direction. A strong instability developed again with the theoretically 
predicted linear growth rate [7]. The error for the total energy conservation was 0.1% 
at the end of the run, where the instability had reached the saturation stage. The total 
running time (CPU) was approximately 2 hours on the IBM 360/91. This indicates 
that it is feasible to simulate low-frequency microinstabilities using real plasma 
parameters within a reasonable computing time with our model. 

The details of the simulation results for the drift wave instabilities have been 
reported elsewhere [7, 81. Let us describe briefly the significance of these results. First 
of all, we were able to provide detailed comparisons with the existing linear theories, 
hitherto unavailable from the laboratory experiemnts. The anomalous diffusion 
and conductivity coefficients were also calculated from the observed particle and 
energy transport across the magnetic fieldin the inhomogeneous direction. These 
scaling laws are important, for example, for the numerical modeling of the tokamak 
transport. Furthermore, we were also able to shed some light on the most important 
and, yet, unresolved question concerning the nonlinear evolution of the instability. 
The results indicated that the quasi-linear decay of the density profile was responsible 
for the nonlinear saturation, and the energy transport was mainly the result of the 
density profile change which, in turn, altered the local dispersions. With these 
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FIG. 9. Drift wave instability with the real mass ratio mi/me = 1837. 

observations, a self-consistent quasi-linear theory has been developed [8]. Very good 
agreement was found between the theory and the simulation in the time evolution 
of the instability. This shows the importance of the particle code simulation for 
studying low-frequency microinstabilities where the kinetic effects such as Landau 
damping and finite gyroradius are of fundamental importance. 

Let us make one brief comment on the usefulness of the quiet start technique for 
suppressing the random noises in drift wave simulations. We have tried the technique 
by loading the phase space uniformly with the weighted charge and mass for each 
particle in the inhomogeneous x direction according to a prescribed density profile. 
Unfortunately, however, the numerically induced beam instability associated with 
the quiet start scheme, which was in the form of the loss cone instability for a 
magnetized plasma, modified the drift instability substantially at the later stage of the 
development. This is because, under the normal circumstances for the simulation, the 
growth rate of the drift mode is comparable to that of the beam loss cone mode. 
The latter is usually a small fraction of the ion cyclotron frequency depending on the 
number of beams in the phase space. Therefore, additional smoothing of the ion orbit 
seems to be necessary in order to eliminate the beam loss cone mode. However, the 
smoothing in five-dimensional phase space appears prohibitive. 
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4. CONCLUDING REMARKS 

We have developed a 2&dimensional particle code which can simulate nonuniform 
plasmas in a bounded system where the plasma-wall interactions are carefully 
eliminated. Using guiding-center drift approximation for the electron transverse 
motion, we have shown that it is possible to simulate real plasmas within a reasonable 
computing time using the presently available computers. The results obtained indicate 
good agreement with the existing linear theory in the case of collisionless drift waves. 

It is also possible to extend the present model to a full three dimensions. The 
transverse drift motion should cause no difficulty. The longitudinal motion, on the 
other hand, may give us trouble when large time steps are employed. Since one is 
interested in the low-frequency microinstabilities such as those existing in a tokamak, 
it is possible to truncate the phase space such that only the modes k, > k,, are kept, 
because those are the most dangerous oscillations. For such a case, again it is feasible 
to use a large time step dt along the lines of force. 

We have given examples only for the simulation of drift waves (w < Qi). However, 
it should be emphasized that the model can be extended to include the polarization 
drift to study the high-frequency phonomena such as the lower hybrid heating, since 
the full dynamics are retained for moving the ions. For higher-frequency problems, 
the full dynamics for the electrons is then necessary. 

As discussed in Ref. [4], it is also possible to use the exact particle mover with 
large wee dt (> 1) in a uniform magnetic field without employing the guiding center 
formalism. However, the use of the guiding center formalism is necessary when 
dealing with the spatially varying magnetic fields such as those existing in a tokamak. 
Computer modeling of tokamaks is, of course, one of our aims. 
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